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Dimensional continuation for bound state problems 
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Blackett Laboratory of Physics, Imperial College of Science and Technology, Prince 
Consort Road, London SW7 2BZ 

Received 24 August 1976 

Abstract. By adapting Schwartz’s treatment of nearly singular potentials we show how 
dimensional regularization can be used to resolve the continuum eigenvalue difficulty in 
relativistic bound state problems involving transitianal interactions. 

Marginally singular potentials, that is attractive potentials which compete with the 
kinetic energy in the vicinity of the origin, have peculiar difficulties in that simple 
normalization criteria lead to continuous eigenvalue solutions. (See the review of 
Frank et a1 (1971), where such potentials are termed transitional.) Only if one makes 
recourse to more sophisticated concepts (Case 1950) is it possible to select out a discrete 
set of eigensolutions from among the continuum. The problems associated with such 
potentials are not just of academic interest since a very practical example which 
highlights the difficulties is provided by the relativistic bound state equation for a 
fermion-antifermion composite with a potential derived from a one-particle exchange: 
owing to the singular character of the kernel, one discovers, for a fixed binding energy 
and excitation number, a continuous range of permissible coupling constant eigen- 
values, contrary to our physical intuition derived from the non-relativistic analogy. In 
this particular model, say at binding energy equal to twice the fermion mass, two 
methods have been suggested to pick out a point eigenvalue from the continuum. The 
first method, proposed by Goldstein (1953) who originally studied this case, was to cut 
off the relative momentum integrations at some large value A and to look for those 
solutions which did not depend on A, or as he stated ‘were insensitive to the cutoff 
procedure’. The second method (Delbourgo et a1 1967) was to regard the symmetry of 
the eigenvalue problem as a particular breaking of a problem possessing a higher 
symmetry. Fortunately, and by no means obviously, both methods agreed on the final 
answer which corresponds to the eigensolution which is the least singular at the origin. 

In this paper we wish to exhibit a third method that is altogether different but which 
also leads to the same conclusion. It is based on dimensional continuation and makes 
use of Schwartz’s (1976) recent work on nearly singular potentials. Why this method 
has a chance of success is because the effective potential, continued to a dimension 
less than 4, is ‘safe’ relative to the kinetic energy near the origin and thus possesses 
discrete eigenvalues. We then abstract the answer as the dimension tends to 4. In that 
sense we differ from Schwartz who keeps away from this limit since he interprets the 
potential as a physical one which incorporates quantum corrections; furthermore his 
work is all non-relativistic, though he points out that the technique can be generalized to 
the relativistic situation. 

Let us consider the Bethe-Salpeter equation for a fermion-antifermion wavefunc- 
tion Q ( p ,  4) in a space-time of dimension 4-  2w, where the kernel corresponds to the 
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exchange of a single meson, 

Here p stands for the total and q, k for the relative momenta, while rA AABTB 
characterizes the nature of the exchange. Equation (1) is notoriously difficult to solve in 
the general case so we shall go to the limit p = 0 where the binding energy is 2m, and the 
problem becomes much easier. If x denotes the relative coordinate the equation 
simplifies to 

(ir . %m)*(x)(ir. S-m)=g2rA*(x)rg A“”(x). (2) 
In a parity conserving theory AAB(x) = gAB A(x). Therefore if we expand T into the 
appropriate complete sett  of r matrices relevant in that dimension, 1I, = E, Trsl*[sr[”l; 
equation (2) reduces to 

(3) 1 Tr[(iT . a- m)T,,,(iT . a- m)T[r~]*r[‘l = (4-2w)cg2 A(X)*~,] 
r 

where c = 1 for scalar or pseudoscalar exchange, 2 - 2w for vector exchange in a Fermi 
gauge, etc. Equations (3) couple s values which differ by 1. The one exception is the 
last, pseudoscalar vector (the relativistic analogue of the ‘So component) which has a 
clean equation$ for ‘P[4-2w1 = P :  

(a2 + m2)P(x)  = cg2 A(x)P(x). (4) 
Only the singularity at x = 0 is relevant to the continuum eigenvalue difficulty so we 
shall replace A by the massless propagator in (4), 

A(x)+ D(x) = r(1- W ) ( - X ~ ) ~ - ~ / ~ T ~ - ~ .  

Also we shall redefine our eigenvalue gz in terms of a dimensionless A 2  by setting 
cg2r(l  - w)/4r2-” = A2mZw. Then after rotating to Euclidean space, r2  = - x 2 ,  the 
pseudoscalar equation simplifies to 

[m-2(a/ar)2-  1 +h2(m2r2)w]P(rv)  = 0. ( 5 )  
Finally we decompose P into a radial function multiplying the appropriate (4 - 2w)- 
dimensional spherical harmonic#, 

p(rv) = RN(mr) YN... ( r )  (6) 
N 

to obtain the radial equation11 

d2 3 - 2 ~  d h 2  N(N+ 2 - 2w) 
1- 

U Z  
(7) 

t rrSl stands for the entire set of antisymmetrized, normalized products of s antisymmetric matrices. Thus s 
runs over the integer values from 0, 1, . . . , 4  - 2w. (See Delbourgo and Prasad (1974) for notational details.) 
$The other equations either reduce to very similar equations to (4) after contracting over I, or else they are 
painvise coupled and give essentially the same singularity difficulties as (4). 
8 YN,..(r) contains a number of degeneracy labels in addition to the Cas id r  label N ( N + 2 - 2 w ) ,  N =  

11 We should point out that Gunther (1974) has recently questioned the validity of the Wick rotation in passing 
from (4) to (7). 

0, 192,.  . . . AIS0 yN(e)=Cf;”(cn e). 
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where normalization (and perhaps other criteria) must be used to get the eigenvalue A 
and eigenfunction R in terms of N for given w. 

Initially we fix w > 0  and eventually we go to the limit as w + 0. Thus we are 
approaching four dimensions from below in order that the potential u2w-2 should not 
dominate over kinetic and centrifugal terms. Before finding out what happens as w 
decreases to zero let us briefly recall the troubles with continuous A in four dimensions 
where w E O .  Then (7) reduces to 

with solutions 

uRN(u) = AK,(u)+Bl,(u); ~ ~ = ( N + l ) ~ - h ~ .  (9) 

The normalizability condition, q * ( O ,  x)9(0, x) d3x <CO, requires us to choose the 
exponentially damped solution? K,(u), and since in the vicinity of the origin 
& ( U )  -U+’, 

/ R *R d3r / r-21” dr. 

Thus normalizability fixes A’ - ( N +  1)’ > -:. On the other hand, reality of v requires 
( N +  1)2 3 A ’. Hence all eigenvalues in the range 

(N+1)2-i<A2S(N+1)2 (10) 

appear to be admissible, a situation one is loth to accept physically on the basis of all our 
non-relativistic experience with ordinary Schrodinger equations. The two methods 
mentioned earlier select the eigenvalue A = N +  1 and give the corresponding &(U) = 
Ko(u)/u as the least singular solution. 

Now let us see how dimensional continuation also leads to the same selection of A by 
returning to (7). Following Schwartz (1976). we first rescale our dimensionless variable 
U = mr (to remove the U dependence connected with A 2,  by putting U = U ‘Iw and then 
we abstract a threshold factor by setting 

R U’- ’ /~J(U)  = uW-’ J(u”) .  (1 1) 

The resulting equation for J ( v )  is 

d2J  1 d J  A’ (N+l-w)’ J ) J =  w 2 u 2 - 2 / w  
-+--+ -_ 
du2 U du ( w 2  w 2 u 2  

which is recognizable as the equation for a particle in a cylindrically symmetrical 
potential V(u)  = u-2-c2’w/w2. As remarked by Schwartz, in the limit of very small w, V 
approximates to a square well potential: V - ,  00 for u > l  and V - ,  0 for 0 < U < 1. 
Therefore we can substitute (12) by the free particle equation, subject to the boundary 
value J ( u  = 1) = 0 as w + 0. The solution of (12) in the limit of small w is therefore given 
by the Bessel function J-l+(N+l)lw(Au/w) after discarding the irregular Y solution. The 
boundary condition at U = 1 leads to discrete eigenvalues A,, such that 
J-l+(N+l)lw(An/~)=O where A,,/w are the zeros of the Bessel function. One can 
ascertain from the properties of Bessel functions (Abramowitz and Stegun 1968) that 

t The sign of the root for Y is irrelevant since K p  = K-”. 
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for fixed z and asymptotically large cc. that J, (pz)  has zeros located in the neighbour- 
hood of z = 1. The position of these zeros can then be found by means of the 
asymptotic behaviour 

J,(p + z p : )  = (2/p):Ai(-2iz)+O(l/@) 

upon making the identifications 

p = - l + ( N + l ) / w  and A = N + l + z ( N + l ) i w % + O ( w ) .  

The zeros of the Airy function are tabulated in the standard references (see 
Abramowitz and Stegun 1968) and occur at 

2fzo = 2.34, 242, = 4.08, 2:zZ = 5.52, . . . . (13) 

A n = ( N + l ) + z n ( N + l ) ~ w ~ + .  . . (14) 

Thus one finishes up with the discrete set of eigenvalues 

all of which crowd in to (N + 1)  for fixed n, as w + 0. The corresponding eigenfunctions 
tend to 

M U )  = U W - l J ( N + l ) , w r ( N +  1)U"lWI (15) 
in the limit of small w. These must reduce to Ko(u)/u as we know that the ancestral 
equation (7) collapses into the four-dimensional form (8) for w = 0. However we have 
been unable to discover the relevant formula from the texts on Bessel functions which 
clearly demonstrates this equivalence as w + 0. 

The one weak point in our analysis is the question of non-uniform limits whereby we 
have fixed n at a finite integer value in (14) before we pass to w = 0. However since 
specific orders of limits have been adopted in past applications of dimensional regulari- 
zation (for instance in treating infrared divergences, or else to prove the vanishing of 
tadpole graphs) our attitude to this question is no different from that of previous 
authors: namely, that of maintaining consistency, which we believe we have donet. 

Evidently this technique of dimensional continuation can be applied to other 
relativistic problems involving higher spin particles that are characterized by transi- 
tional interactions. 
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